решетка подпространств

решетка подпространств
subspace lattice мат.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Решетка (теория множеств) — Решётка, структура  частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств …   Википедия

  • ДЕДЕКИНДОВА РЕШЕТКА — дедекиндова структура, модулярная решетка (структура), решетка, в к рой справедлив модулярный закон, т. е. влечет (a+b)c=а+bс для всякого Ь. Высказанное требование равносильно справедливости тождества ( ас+b) с=ас+bс. Примерами Д. р. служат… …   Математическая энциклопедия

  • НЕПОДВИЖНАЯ ТОЧКА — 1) Н. т. отображения Fмножества X такая точка , что . Доказательства существования Н. т. и методы нахождения Н. т. важные задачи математики, т. к. решение всякого уравнения путем преобразования его к виду сводится к нахождению Н. т. отображения …   Математическая энциклопедия

  • ДОПОЛНЕНИЕ — операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… …   Математическая энциклопедия

  • ИДЕАЛ — специального рода подобъект в иек рой алгебраич. структуре. Понятие И. возникло первоначально в теории колец. Название И. ведет свое происхождение от идеальных чисел. Для алгебры, кольца или полугруппы Аидеал I есть подалгебра, подкольцо или… …   Математическая энциклопедия

  • КОРНЕВАЯ СИСТЕМА — конечное множество Л векторов векторного пространства Vнад полем R, обладающее следующими свойствами: 1) Rне содержит нулевого вектора и порождает V;2) для каждого существует такой элемент а* сопряженного к F пространства V*, что и что… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”